
電波利活用セミナー2023

地域に根ざした課題解決の取組や事例への期待

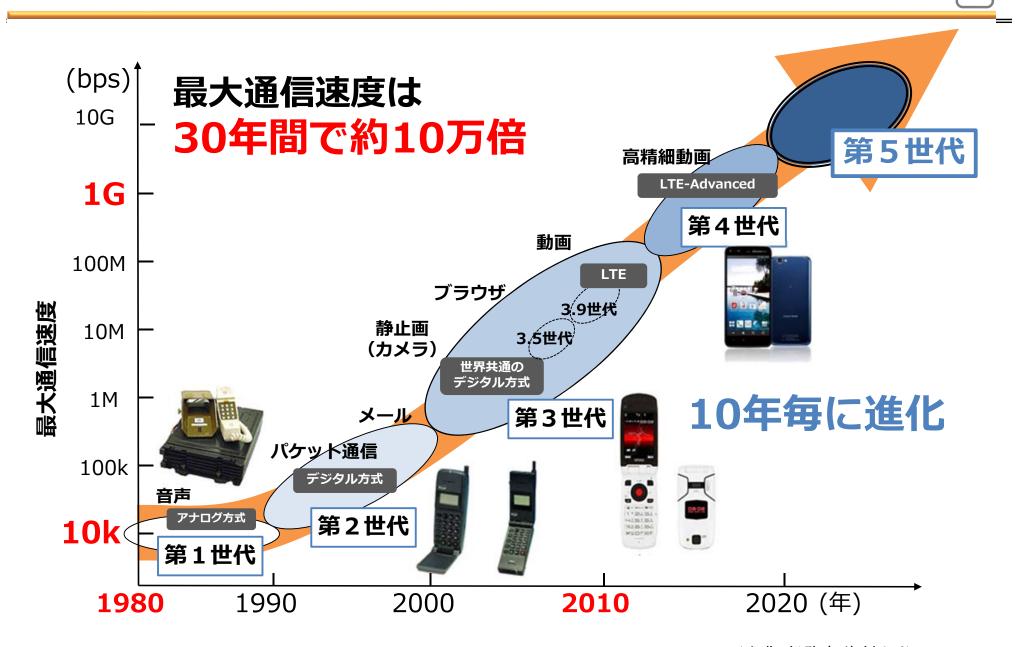
佐々木重信 新潟大学 自然科学系(工学部)

はじめに

- •5G:2020年にサービス開始. エリア展開が進行中
 - ▶ 2022年3月時点での人口カバー率 (携帯キャリア4社のいずれかがカバーしている率)
 - ◆ 全国:93.2%
 - ◆ 長野県:82.8%, 新潟県:85.8%
- •ローカル5G
 - ▶ 2021年ごろから数多くの実証実験が行われているが、、、

「5Gならでは」のサービス、 5Gの「ウリ」ってなんだろう・・・

この講演では・・・


- •5Gは、
 - ➤ Society5.0
 - > デジタル田園都市国家構想
 - の実現に不可欠なインフラ

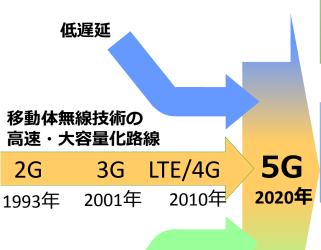
Shigenobu Sasaki, NU. 電波利活用セミナー2023

- イノベーション、価値創生の観点から 5Gの普及 • 発展に何が必要かを考えてみたい
 - > 今後の地域における課題解決の取り組みや実証への期待

移動通信システムの進化 (第1世代~第5世代)

5G(第5世代移動通信システム)での進化

<5Gの主要性能>


超高速 超低遅延

多数同時接続

最高伝送速度 10Gbps 1ミリ秒程度の遅延 100万台/km²の接続機器数

5Gは、AI/IoT時代のICT基盤

超高速

現在の移動通信システムより 100倍速いブロードバンドサー ビスを提供

⇒ 2時間の映画を3秒でダウンロード(LTEは5分)

招低遅延

利用者が遅延(タイムラグ)を 意識することなく、リアルタイム に遠隔地のロボット等を操作・

ロボットを遠隔制御

⇒ ロボット等の精緻な操作(LTEの10倍の精度)をリア ルタイム通信で実現

多数同時接続

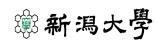
スマホ、PCをはじめ、身の回り のあらゆる機器がネットに接続

⇒ 自宅部屋内の約100個の端末・センサーがネットに接続 (LTEではスマホ、PCなど数個)

- NSA(non-stand alone)構成(5Gのエリア展開を優先)
- →SA(stand alone)構成(低遅延・超多数接続の強化: 5Gのねらいを現実に)

同時接続

(出典:総務省 資料より)


社会的

な

ンパクト

5Gを含めたインフラの整備が進行中

図表 4-3-3-4 デジタル田園都市国家インフラ整備(ロードマップ) 2022年度 2023年度 2024年度 2025年度 2026年度 2027年度 2030年度 通信事業者、地方自治体、社会実装関係者等からなる「地域協議会」を開催し、地域のニーズを踏まえた光ファイバ・基地局整備を推進 総合的 な取組 電波法及び電気通信事業法の改正案(第208回国会に提出済) 99.90% (%) 世帯カバー率 99.85% 光ファイバ網の維持 (2021年度末:99.7%) (1) 補助金による整備支援、交付金制度による維持管理費の支援 光ファイ 光ファイバ・携帯電話の バ整備 いずれも使えない集落の解消 ※ 更に、必要とする全地域の整備を目指す 全ての居住地で4Gが利用可能な状態を実現 5 G基盤の維持 ニーズのあるほぼ全エリアに 5 G親局整備完了(基盤展開率: 98%) 人口カバー率: 全国95% 全国97% 全国·各都道府県99%(※) 各都道府県90%程度以上 全市区町村に5G基地局整備 基地局数:28万局 30万局 60万局(※) 補助金(インフラシェアリングを推進)や税制による整備促進 (2) 携帯電話用周波数を現状の3倍に(3GHz幅 ⇒ 9GHz幅) ※ 2.3GHz帯割当ては2022年度早期 5G整備 5G中継用基地局等の制度整備検討 検討結果に基づく所要の措置 インフラシェアリングGLの改正 インフラシェアリングを可能とする技術開発 ローカル 5 G開発実証 技術基準整備 検討結果に基づく所要の措置 ローカル 5 Gの柔軟運用を可能とする制度整備検討 非居住地域のエリア化及び鉄道・道路トンネルの電波遮へい対策について、補助金を活用しつつ整備促進 (3) デジタル田園都市スーパーハイウェイ(3年程度で完成) DC/海底 運用開始 海底ケーブル陸揚局の地方分散(数力所程度) ケーブル データセンターの地方分散(大規模DC最大5~7筒所程度(総務省・経産省) 等整備 公募開始 プロジェクト実施 基金清算※ ※ 総務省のみ (4) 研究開発戦略を反映したBeyond 5G研究開発を強力に推進 B5Gの 研究開発 Bevond5G 運用開始 ITU、3GPP等で技術性能要件の検討、各国から順次提案受付、国際標準策定 戦略策定 (6G) 大阪・関西万博を起点として順次ネットワークへの実装

(出典:総務省情報通信白書令和4年度版)

5Gの応用分野と展開

ICTインフラ 8つの課題	実証テーマ (2017)	実証テーマ (2018)		実証テーマ (2019)	2020
労働力	・建機遠隔操作・テレワーク	・建機遠隔操作・テレワーク・スマート工場【新規】	5	【実証内容】 8つの課題+コン テスト経由の優良	5
地場産業	_	・スマート農業	利	アイデアを組み合 わせた総合的なソ	G
観光	・高精細コンテンツ配信	・インバウンド対策【新規】 ・8Kパノラマパブリック ビューイング	G利活用アイご 地方発	リューション 【実施者】 通信事業者等に加	の地方
教育	-	・スマートスクール【新規】	テの安	え、地域のビジネスパートナー	、 方
モビリティ	・隊列走行	・隊列走行 ・除雪車走行支援【新規】	イデアコンテストを2発の案件発掘	【実施場所】	1 ^o
医療・介護	・遠隔医療	・遠隔医療	え畑	小規模自治体等(よりルーラルへ)	展
防災・減災	・防災倉庫	・スマートハイウェイ【新規】 ・ドローン空撮【新規】	を開催	【実証目的】 地方の抱える様々	開
マイナンバー カード	-	・行政サービス【新規】	惟	な課題の総合的な 解決	

(出典:総務省 資料より)

5G総合実証試験の例

高精細画像によるクレーン作業の安全確保 (愛媛県今治市)

クレーンの玉掛作業において 死角となっている場所の4K 高精細映像を5Gを用いて運 転台に送信。映像を確認しな がら安全に作業できる環境を

> 高所のクレーンの運転台 高精細映像を送信

遠隔高度診療(和歌山県和歌山市、日高川町)

遠隔地の診療所の医 節が、患者の様子や バイタルサイン、エコー 動画を5Gにより大学 病院の専門医へ送信。 専門医の指示を受け、 患者に対して的確な 診断・治療を提供。

濃霧中の運転補助(大分県大分市)

車両に搭載した4K高精細 カメラの情報を5Gを用 いてサーバへ伝送。映像 解析を行い白線や前方車 両等の情報をヘッドアッ プディスプレイに分かり やすく表示。濃霧中の安 全な運転を支援。

建機の遠隔操縦・統合施工管理システム (三重県伊賀市)

工事現場において5Gの大容量・超低遅延の特 長を活かし、建機の遠隔操縦と施工作業の管理 を行う。

※地図上の赤い点は2019年度に

酪農・畜産業の高効率化(北海道上士幌町)

牛舎内に設置した複数の4Kカメラから5Gを用いて伝送さ れた高精細映像をもとに、牛の位置把握と個体識別を実施。

トンネル内における作業者の安全管理 (北海道赤井川村)

各種センサによるトンネル内異常検知 を実施するとともに、災害・事故時に 建設機械を遠隔操作することで周囲の 確認を行い、作業員 の安全を確保。

建機遠隔操作 による安全確認

山岳登山者見守りシステム(長野県駒ケ根市)

4Kカメラを搭載した ドローンからの高精 細空撮映像をリアル タイムに捜索本部に 配信。遭難者の状況 把握を行い、迅速な 救助活動につなげる。

VRとBody Sharing技術による体験型観 光 (沖縄県那覇市)

VRとロポット の活用により、 遠隔地からでも 観光地と同様に アクティピティ を仮想体験でき るサービスを実

鉄道地下区間における安全確保支援 (大阪府大阪市)

地下鉄列車内の 様子を撮影した 4K高精細映像を 5Gを用いて伝送 し、映像解析に より列車内の異 常等を自動検知。 駅員に通報。

トラック隊列走行 (静岡県浜松市 (新東名高速道路) 他)

複数のトラック車 両間で5Gを用いた 運転制御を超低遅 延かつ超高信頼で 行うことで、隊列 走行を実現。労働 力不足の解消につ なげる。

実証試験を実施した地点を示す。

救急搬送高度化 (群馬県前橋市)

救急車やドクターカー内 の患者・医師の4K映像 を5Gを用いて救急指定 病院やかかりつけ医へー 斉配信することで、患者 の受入先・受入方法検討 の時間短縮、症状の早期 共有を実現。

(出典:総務省 情報通信白書 令和2年版)

5Gの機能について考えると・・・

- 超高速•••
 - ユーザが、4Gのサービスをイメージとして持っている (例:スマホによる動画視聴)→5Gへの進化で受ける恩恵をイメージしやすい

一方で・・・

- 超低遅延
- 超多数接続
 - ▶ ユーザがイメージとして持つ(基準となる)サービスが無い! →5Gへの進化によって受ける恩恵がイメージできない

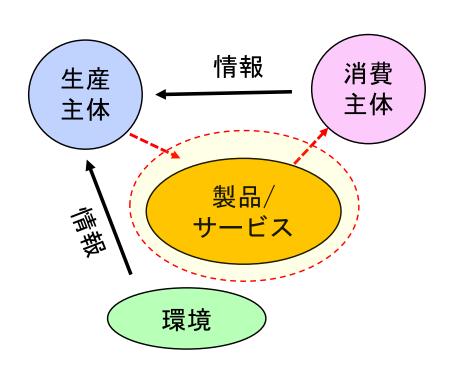
イノベーションと価値創生

- ・システムが提供する価値・価値創生のモデル[1]
- ・人エシステム(製品やサービス)の基本的な問題設計に おいて
 - > その目的
 - ▶ それを取り囲む環境

という視点から、次の3つのクラスに分類

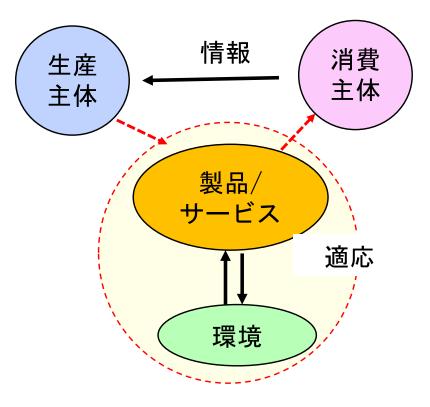
• クラスI: 完全情報問題

•クラスII: 不完全環境情報問題

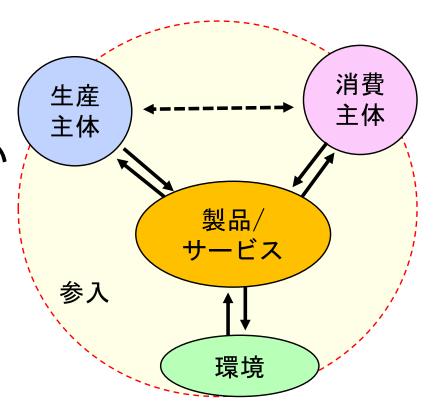

•クラスIII: 不完全目的情報問題

[1] 上田完次: "研究開発とイノベーションのシステム論", 精密工学会誌, vol.76, No.10, pp.737-742, 2010

クラスI: 完全情報問題


- •環境及び目的に関する情報が完全。
 - ▶ 製品やサービスの生産主体(プロバイダ)と 消費主体(レシーバ)の価値が独立に明示できる
 - ▶ 環境が事前に確定できる
- 閉じたモデルとして問題を完全に記述することが可能
- ・価値創生モデル:提供型価値
 - > 最適解探索が中心課題
 - ◆ 課題、環境条件が明確になっている 中で最適解を見つける
 - ◆ コスト最小化の最適化戦略が課題

Shigenobu Sasaki, NU. 電波利活用セミナー2023


クラスII: 不完全環境情報問題

- •目的に関する情報は既知
- 環境に関する情報が未知あるいは変動
 - →問題を完全に記述できない
 - ▶ 製品やサービスの生産主体と消費主体の価値は独立に明示できる
 - > 環境が変動し予測困難
- •価値創生モデル:適応型価値
 - > モデルは環境に開いたシステム
 - → 環境の変化に応じた 適応的解探索が中心課題

クラスIII: 不完全目的情報問題

- •目的に関する情報が不十分
- ・環境に関する情報も不十分
 - →問題を完全に記述できない
 - ▶ 生産主体と消費主体の価値が 独立的に明示できない
 - ▶ 生産主体が消費主体の価値を 事前に確定できない 両者が強く相互作用し分離できない
- 共創型価値
 - ▶ 目的も同時に定めていく必要あり
 - > 共創的解探索が中心課題

この観点で「5G」の特徴を見ると・・・

<5Gの主要性能>

超高速 超低遅延 多数同時接続

5G

2020年

Shigenobu Sasaki, NU. 電波利活用セミナー2023

最高伝送速度 10Gbps 1ミリ秒程度の遅延 100万台/km²の接続機器数

5Gは、AI/IoT時代のICT基盤

低遅延 移動体無線技術の 高速・大容量化路線

LTE/4G 3G 2001年 1993年

2010年

同時接続

超高速

現在の移動通信システムより 100倍速いブロードバンドサー ビスを提供

2 時間の映画を 3 秒でダウンロード (LTEは5分)

超低遅延

利用者が遅延(タイムラグ)を 意識することなく、リアルタイム に遠隔地のロボット等を操作・ 制御

ロボットを遺隔制御

⇒ ロボット等の精緻な操作 (LTEの10倍の精度) をリア ルタイム通信で実現

多数同時接続

スマホ、PCをはじめ、身の回り のあらゆる機器がネットに接続

自宅部屋内の約100個の端末・センサーがネットに接続 (LTEではスマホ、PCなど数個)

2G

社会的


な

詳しく考えてみると・・・

- 超高速(・大容量)(を活かしたサービス)
 - ➤ 4Gでサービスの先行事例がある(例:動画配信など)
 - →目的、環境が比較的明確
 - ▶ 5G導入により、消費主体(ユーザ)に提供できる価値が 明示しやすい
- •この機能が要求される多くの課題

Shigenobu Sasaki, NU. 電波利活用セミナー2023

- →クラスI: 完全情報問題
 - 一部はクラスII: 不完全環境情報問題

> 目的が明確な分、達成目標が設定しやすい

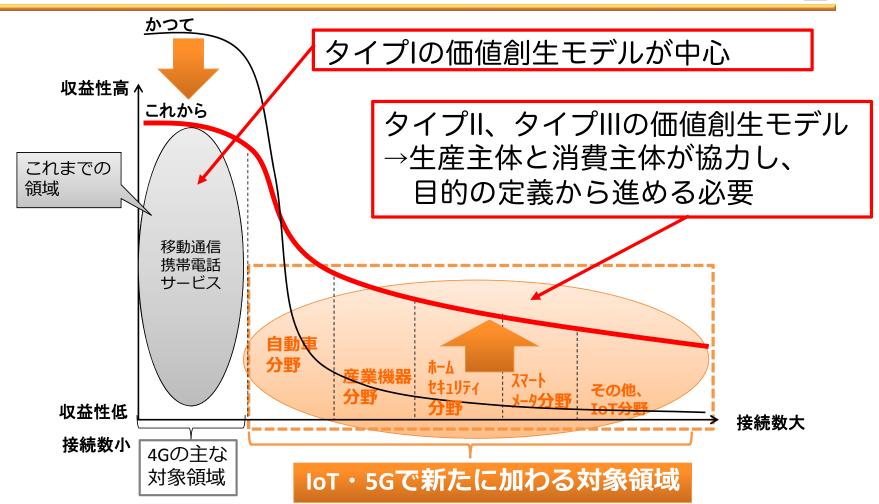
15

一方で・・・

- 超低遅延(を活かしたサービス)
 - ▶ 4Gでのサービスではほとんど意識されなかった
 - ▶ 5Gで脚光
 - ◆ 現状は(無線を含む)ネットワーク以外の部分での遅延が大・・・End-to-Endで「低遅延」の価値が見えにくい
 - →クラスII: 不完全環境情報問題 または クラスIII: 不完全目的情報問題
- ・多数同時接続(を活かしたサービス)

Shigenobu Sasaki, NU. 電波利活用セミナー2023

- ▶ 4Gでは該当するサービスがほとんどない
- ▶ 5Gの「ウリ」・・・ユーザに「これ!」という価値を提示しにくい →クラスIII: 不完全目的情報問題


16

5Gからの新たな領域では・・・

ワイヤレスを通した様々な「データ」の獲得・活用の期待

IoT・5G時代の産業構造の変化

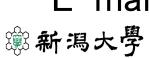
3

まとめにかえて

- 5Gの時代における新たな価値の創出
 - → 3G→4G: スマートフォンが新たな価値創出のキーとなった
 - ▶ 4G→5G: 4Gの時代になかった製品・サービス
 - ◆ 目的を明確に定義しきれないものが多い
 - ◆ 環境もさまざまで明確な定義は困難

Shigenobu Sasaki, NU. 電波利活用セミナー2023

- → ユーザ(消費主体)が望む(満足できる)レベルの設定から
 - ◆ その過程で、関連する技術の進歩を促す必要が出るかも
- ・ユーザとプロバイダ(生産主体)との共創
 - ▶ 目的の具体化・定義
 - …ユーザの「願望(こうしたい)」を(例えば数値として)具体化
 - さまざまな地域・環境における取り組みを通して
 - →プロバイダが供給できる価値の具体化、ユーザへの提示


御清聴、ありがとうございました。

問い合わせ先

佐々木 重信

(新潟大学工学部工学科 電子情報通信プログラム)

E-mail: shinsasaki@ieee.org

